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Abstract

Accurate prediction of agricultural yield is extremely important to
ensure food security and to cope with the challenges created by cli-
mate change and natural disasters. Forecasting agricultural yield is
a challenging task due to the complex nature of variables (fertiliser,
rainfall, temperature and others) that affect agricultural production.
This study employs six supervised machine learning algorithms:
Support Vector Machine (SVM), Decision Tree (DT), Random For-
est (RF), Multi-Layer Perceptron (MLP), Recurrent Neural Net-
work (RNN), and Convolutional Neural Network (CNN) to build a
predictive model using 49 years of historical data (1973-2021) on
paddy, wheat, and maize. Model performance was evaluated using
Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Er-
ror (rMSE). Results show that DT and RF models are the most
precise with MSE 1% to 5%, MAE of 8% to 21%, followed by
SVM and CNN. Key predictors of crop yield include area cultivated,
capital expenditure, banking expansion, rainfall, temperature, and
fertilizers, while irrigation and road network were less significant.
The study recommends that farmers prioritize commercial farm-
ing, agricultural equipment, and timely available of fertilizer appli-
cation. The Government of Nepal (GoN) should redirect subsidies
towards agricultural mechanization, ensure timely supply fertilizer,
and expand banking services in agricultural areas.
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INTRODUCTION

Agricultural yield prediction is becoming a more profound issue because of the grow-
ing concern of people regarding global food security (OECD, 2013). Even though
precise output forecasting is complex and challenging, it is vital for sustainable farm-
ing and efficient use of natural resources.(Paudel et al., 2021). Accurate estimation
of agricultural yield has gained significant importance as it enables policymakers,
farmers, agronomists, commodity traders and other stakeholders to make informed
decisions and plan strategies to enhance productivity and address potential food
shortages. The production of food crops is influenced by a myriad of factors, includ-
ing crop-specific characteristics, environmental conditions and management decisions
(Fischer, 2015). Understanding the interplay between these factors is crucial for de-
veloping effective strategies to maximise agricultural yield (Pretty et al., 2006). To
address this challenge, researchers have stepped in for advanced technological solu-
tions, particularly machine learning models. Many developed economies have bene-
fited from it. However, countries like Nepal have not been able to take advantage of
advanced modelling tools.

The agriculture sector of Nepal, which once dominated the entire economy, is now in
decline. The sector contributed 69% to the GDP in 1975, but by 2013/14, this figure
dropped to 30.3%, and to 24.1% in 2022/23 (MoF, 2023; World Bank, 2023). The
sector grapples with challenges such as inadequate irrigation infrastructure, delayed
availability of seeds and fertilizers, subsistence farming, and slow adoption of im-
proved seeds. Moreover, the absence of rural planning exacerbates issues, leading to
unused arable land due to significant youth migration for foreign employment. Over
the last decade, the nation observed a modest growth rate of 2.9% in the agricul-
ture sector (MoF, 2023). The labour force dependent on agriculture decreased from
60.4% in 2018 to 50.4% in 2021 (CBS, 2018; MoF, 2023). Nepal has transitioned into
a net importer of major crops, with import values of NRS 47.6, NRS 19.6, and NRS
6.32 for paddy, maize, and wheat, respectively, in the fiscal year 2021/22 (MoF, 2023).

Over the past few decades, policymakers introduced various initiatives to support
farmers, including the Institutional Development Program, Community Ground Wa-
ter Irrigation Sector Project, Small Farmer Development Program, and Small Irri-
gation Project. Recent efforts involve minimum support prices, an 80% subsidy on
insurance premiums, digital soil mapping, and an agriculture mechanization project
(MoF, 2023). Monetary initiatives, such as priority sector lending, concessional loans,
and setting a threshold for agricultural credit as a proportion of total credit, under-
score the sector’s priority. As of July 2023, total loans disbursed to the agricultural
sector amounted to NRS 414.6 billion, constituting 8.5% of the total loan portfolio
(NRB, 2023). These interventions underscore the paramount importance of the agri-
cultural sector for policymakers. Given the substantial financial investment by the
government, allocating significant resources to bolster this sector, a model for yield
prediction becomes not only justifiable but imperative.

Field surveys, crop growth models, remote sensing, statistical models, and various
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combinations are frequently employed to predict crop yield. With the increasing
availability of reliable models and less than adequate precision of existing economet-
ric models, a comprehensive study that objectively assesses the suitability of machine
learning models for agricultural yield prediction seems appropriate. The effectiveness
of ML in predicting agricultural yield is still unknown for low-income countries whose
agricultural ecosystems are not well developed. To the best of the knowledge of the
researcher, no published research in Nepal has used ML to predict agricultural yield.
The study is the first of its kind on many counts. First, it is the first study to use
machine learning models to predict Nepalese agricultural yield. Nepal is contextually
unique in different aspects such as geography, climate, access to technology and scale
of farming. Second, this study incorporates several explanatory variables (such as In-
flation, Bank Branches and Capital Expenditure) that affect agricultural production
but have not been considered in most earlier research. Identification of a suitable
forecasting model also benefits all stakeholders. Such studies are valuable to the
farmers and stakeholders such as traders, researchers, agronomists and policymakers.

The remaining portion of this paper has been presented in the following five sections.
Section two presents the review of relevant literature. The research methodology is
presented in the third section; the results and discussion of the study are presented
in the fourth section, and the study ends with the discussion and conclusion section.

LITERATURE REVIEW

A larger number of studies have investigated the relationship between agricultural
yield and its determinants using different econometric models. Time series and panel
data models are the most widely used models (Blanc & Schlenker, 2017; S. R. Singh,
2007). Nguyen et al. (2019) used regression discontinuity to assess the impact of
credit policy on rice production in Myanmar. Similarly, Abu and Haruna (2017)
and Houensou et al. (2021) used endogenous switching regressions to investigate the
impact of access to finance on agricultural commercialization and farm productiv-
ity. Weber et al. (2015) used 2SLS for examining crop price impact on agricultural
revenue. On the other hand, Headey et al. (2010) and Rada et al. (2011) used data en-
velopment analysis for assessing agricultural productivity. Studies of D’Agostino and
Schlenker (2016), McArthur and McCord (2017), and Schlenker and Roberts (2009)
used a fixed effect estimator and, Nguyen Chau and Scrimgeour (2022) and Yitayew
et al. (2022) used propensity score matching. Lio and Liu (2006) used Cobb-Douglas
production function and, Butler and Cornaggia (2011) used DID estimation. Time
series and panel data models have a significant contribution to agricultural economic
research, but they still possess a limitation, especially in their capacity to precisely
predict (Hill et al., 2020; Huang et al., 1998).

With the advancement in statistical computation and estimation methods, several
new models based on machine and deep learning methods have emerged (Muru-
ganantham et al., 2022). In the last couple of years, machine learning models can be
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seen in substantial research in developed economies (Liakos et al., 2018). The concept
of machine learning emerged during the 1950s (Samuel, 1959). However, its use as a
tool for the estimation of economic variables started quite later. The use of machine
learning models for predicting bankruptcy, stock performance, financial distress fore-
casting and bond rating became quite frequent (Wong & Selvi, 1998) in the 1990s.
The utility of the machine learning model in agricultural economics was not common
though its use in agriculture can be traced back to Yost et al. (1988). In recent years,
research studies have started using machine learning models for agricultural output
prediction (Abbaszadeh et al., 2022; Bijanzadeh et al., 2010; Crane-Droesch, 2018;
Everingham et al., 2016; M. D. Johnson et al., 2016; Kaul et al., 2005; Koirala et al.,
2019; Liu et al., 2001; Pantazi et al., 2016; Wang et al., 2020). More specifically, Stas
et al. (2016) used boosted tree regression and SVM, Liang et al. (2015) used ANN
and RF, and Kaul et al. (2005) used ANN and Multiple Linear Regression (MLR).
Most of the studies on agricultural yield or yield estimation are based on data from
developed economies, especially the US (Ball et al., 2016; Butler & Cornaggia, 2011;
Hutchins, 2022; Kukal & Irmak, 2020; Schlenker & Roberts, 2009; Troy et al., 2015;
Weber et al., 2015) and other developed economies such as UK, France, Germany,
Italy, Japan and South Korea (Chavas et al., 2019; Corrales et al., 2022; Horie et al.,
1992; Landau et al., 1998; Ruß & Brenning, 2010; Yoo et al., 2012).

Extant literature has examined how various factors affect agricultural productivity.
However, the application of machine learning models to estimate agricultural yield is
still in its early stages. Furthermore, the use of these models in low-income countries
like Nepal is uncommon. The capacity of machine learning models to process highly
complex data and provide superior fit has made it popular in forecasting agricultural
yield. Studies such as Kaul et al. (2005) and Koirala et al. (2019); and Pant et al.
(2021) noted a mean error of below 10% when predicting yield using machine learning
models. Van Klompenburg et al. (2020) noted SVM, DT, RF, and MLP as the most
preferred models; therefore, this research has adopted the same to predict the yield
of the major crops.

RESEARCH METHODOLOGY

Data Collection and Pre-processing

This study tried to incorporate all possible data; however, the data before 1973 was
not available for some of the variables. Therefore, the study used data from the
period 1973 to 2021. The study selected only the principal crops (Paddy, Wheat and
Maize) for two reasons: first, they occupy a major chunk of the total agricultural
production, and second, a complete data set is available for only major crops. The
major data sources were Food and Agriculture Organisation (FAO) statistics, Nepal
Rastra Bank, the Central Bureau of Statistics of Nepal and the World Bank. The
study has altogether used 13 independent variables and three dependent variables.
The missing data problem for variables like population, tractors and road network
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was encountered. Since the census is conducted once a decade there are only 6 data
points from 1971 to 2021. Similarly, road network data collected from economic sur-
veys from 2002 to 2022 was available for only 14 data points, with a gap of just a
year between two data points to a gap of up to 7 years. The variable number of
tractors was constructed by taking data from the Department of Transport Manage-
ment (DOTM) and the FAO. The cumulative number of tractors imported up to the
year 2004 was obtained from FAO, and the remaining data was obtained from the
DOTM. Linear interpolation and extrapolation methods were used to generate the
data for the 49 data points for population, road network and number of tractors. The
data was normalised using a standard scalar to scale features to a mean of zero and
a standard deviation of one. It ensures that all features contribute equally, speeds
up convergence in gradient-based optimization, prevents bias towards features with
larger scales, and stabilizes numerical computations. This pre-processing step en-
hances the accuracy and robustness of the models.

Exploratory Data Analysis (EDA) and Feature Engineering

The study utilized line plots to understand the data patterns. An increasing trend
was observed in most of the variables, including crop yield, population, road network,
financial deepening, farm size, fertilizer use, irrigation, exchange rate, bank branches,
capital expenditure, and PCI. Unit root was observed for the majority of the variables,
so data was transformed to the first difference. Even after the first difference, per
capita income and population were not found stationary, and they were dropped.
Similarly, all the variables used for estimation were scaled and normalized to ensure
effective learning by the machine. Additionally, during the EDA, the study presented
only the mean and standard deviation to describe the data, as the primary focus of
this study was on forecasting.

Model Tuning and Validation

The study employed GridSearchCV for tuning SVM, DT, RF, and MLP models,
while RandomizedSearchCV was used for RNN and CNN models. Fivefold cross-
validation was conducted for SVM, DT, RF, and MLP, with parameter estimates
averaged for accuracy. For CNN and RNN, validation was performed using various
train-test splits, ultimately maintaining a 75:25 ratio for final evaluation.

Model Training

The study tried different training test splits and finally used 75:25, realizing its per-
formance as compared to other compositions. This change is now reflected in the
methodology section, and the results section discusses its positive impact on model
accuracy and reliability. The study utilized machine learning libraries including
scikit-learn (version 0.24) and Keras (version 2.4) with TensorFlow backend (ver-
sion 2.5). The training procedures were executed on a workstation with an Intel
i5 processor, 16 GB RAM, and an NVIDIA GeForce 820M GPU to accelerate the
training of deep learning models. The training durations varied: traditional machine
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learning models like SVR, DT, and RF completed training in a few seconds, while
more complex models like RNN and CNN required double time because of their it-
erative training processes. Standard scaling for features and reshaped input data
to fit the requirements of the neural network architectures have been used. These
configurations ensured efficient training processes and optimized model performance.

Explanation of variables

The explanatory variables used in this study are farm size, fertilizer, temperature,
rainfall, exchange rate, inflation, bank branches, capital expenditure, population and
per capita income.

Farm size: Farm size is the size of land in which the crop is cultivated. Farm size is
directly proportional to agricultural yield, as large farm sizes benefit from economies
of scale, operational efficiency and market power. Studies such as Auffhammer and
Carleton (2018) and Cornia (1985) have found positive and significant effects of farm
size on agricultural yield, thus motivating us to keep farm size as a predictor variable.
In this study, a farm size area is in a million hectares.

Fertilizer: Fertilizers such as nitrogen, phosphorous, and potassium play a cru-
cial role growth and development of plants. Fertilizers promote healthy growth by
supplying necessary nutrition and by replenishing nutritional deficiencies in the soil.
Fertilizers also help to improve pest and disease resistance and it also improves soil
fertility and sustainability. Studies such as Madzokere et al. (2021), McArthur and
McCord (2017), and Wei et al. (2018) have noted positive and significant effects of
fertilizer on crop yield. In this study, the aggregate fertilizer data in thousands of
tons.

Temperature and Rainfall: Temperature, precipitation and rainfall have a sig-
nificant impact on crop productivity. Different crops have specific temperature and
rainfall requirements for quality and quantity of yield. Extreme temperatures such
as frost and heat waves can damage crops and reduce yield. Similarly, excessive rain-
fall and soil erosion can impair root health and nutrition availability. Studies such
as Auffhammer and Carleton (2018), Chavas et al. (2019), Chen et al. (2022), and
D’Agostino and Schlenker (2016) have used temperature and rainfall as predictor
variables for agricultural yield.

Irrigation: Efficient irrigation ensures a consistent water supply, promoting op-
timal crop growth and minimizing water wastage. This contributes to increased
agricultural yield and resilience against drought. The study has used land areas
equipped with irrigation as a proxy for irrigation.

Agricultural Mechanization: Modern machinery streamlines farming tasks, re-
ducing labour and cultivation time. This enhances efficiency, boosts productivity,
and improves crop yield and quality. Since data regarding other tools and machinery
were unavailable, the number of agricultural tractors has been used as their proxy.
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Financial Deepening: Improved financial access enables farmers to invest in ad-
vanced technologies and inputs, fostering sustainable practices and resilience against
economic uncertainties. Timely credit empowers strategic decision-making for in-
creased agricultural yield. The Private Credit to GDP ratio has been used as the
proxy for financial deepening.

Road Network: A well-connected road network facilitates the efficient transporta-
tion of agricultural produce, reducing post-harvest losses and ensuring timely deliv-
ery to markets. This contributes to increased profitability and market integration for
farmers. The total road network in kilometres has been used as its proxy.

Inflation: Price level affects input cost, production cost and investment and expan-
sion of the farm. Inflation also affects the purchasing power of consumers, leading to a
slash in demand for certain crops and shifting towards lower-cost options. Reduction
in demand demotivates producers to produce, thus affecting the overall production
volume. Studies such as Alston et al. (2009), Auffhammer and Carleton (2018), and
D. G. Johnson (1980) found a significant impact of price level on agricultural yield.

Population: Population is directly interrelated with food demand, production and
agricultural labour supply. A large population creates market opportunities for pro-
ducers. A large consumer base incentivizes farmers to increase food production to
meet the demand. Excessive rise in population may also create challenges for the agri-
cultural sector by increasing pressure on land and by increasing pollution. Studies
such as Auffhammer and Carleton (2018), Baffes and Haniotis (2016), and Schneider
et al. (2011) have also considered population as a predictor of agricultural yield and
price. In this study, the population is in a million number.

Exchange rate: The exchange rate affects the overall export competitiveness of
the country. A low value of domestic currency makes items cheaper for foreign buyers
and helps in an increase in demand. Similarly, an exchange rate also influences the
cost of imported inputs such as seeds, fertilizer, machinery and other input items.
Obayelu and Salau (2010) and Carter et al. (1990) have found a consequential impact
of the exchange rate on agricultural yield. Since the major trading currency for
international trade in Nepal is USD, ergo, this study has adopted NPR/USD as an
explanatory variable.

Bank Branches: Sharpe’s rise in commercial and microfinance branches can be
seen in Nepal in the last two decades. The number of bank branches has reached 11569
(NRB, 2023) across 77 districts of Nepal. Similarly, the loan disbursed by banks to the
agricultural sector is NRs 370 billion (NRB, 2023). Bank branches help in agricultural
production by providing financial excess to the farmers and by supplying them with
credit required for the necessary investment in irrigation systems, purchasing farming
equipment, improved seeds and fertilizers etc. Binswanger et al. (1993) and Khandker
and Koolwal (2016) has observed a positive effect of banking expansion on agricultural
yield.
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Capital expenditure: Government capital expenditure in the form of road, irri-
gation, canal, input subsidies, and research and development has a direct effect on
the agricultural supply chain and overall productivity. Nepal’s government spends
around USD 2 billion per annum for infrastructural development which is approxi-
mately 12 percent of the country’s total expenditure. Studies such as Diakosavvas
(1990) and, Matthew and Mordecai (2016) have noted a sizeable effect of government
capital spending on agriculture.

Per Capita Income: Per capita income can have an impact on demand for agri-
cultural products and farmers’ access to agricultural inputs. Nepal is a low-income
country but its average income per head is increasing trend, CBS (2022) reported
an increment from USD 260 (FY 2000/01) to USD 1246 (FY 2020/21). Lusigi et
al. (1998) and Schultz (1956) have also considered per capita income as a probable
predictor variable for agricultural yield.

Modelling approach

The general architecture for the prediction of crop yield is presented in the following
Figure 1

Farm Size
Fertilizer

Temperature and Rainfall
Irrigation

Agriculture Mechanization
Financial Deepening

Road Network
Bank Branches

Inflation
Population

Exchange Rate
Capital Expenditure
Per Capita Income

Input

Support Vector Machine
Decision Tree

Random Forest
Multilayer Perception

Recurrent Neural
Network (RNN)

Convolutional Neu-
ral Network (CNN)

Processing

Predicted yield of Paddy,
Maize, and Wheat

Output

Figure 1: General architecture for crops yield prediction

In the study, four different machine learning models were used in order to predict
and back-test the production volume of three major crops. The machine learning
data period is segregated from the training and testing period. A certain portion of
historical data is used to train the machine and predict the testing period. But in
this study, instead of testing for a certain fraction of time, this study has made the
prediction for the entire period (both training and testing) so that the accuracy of
prediction for both the training and testing period is visible in graphs. Since there
is no fixed rule for splitting the data into training and testing sets, we tried different
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ratios and found the highest precision with a 75:25 split and reported the same in
the data analysis section.

Support Vector Machine (SVM): SVM is a supervised machine learning tool
used for the prediction and analysis of complex data using high dimensional space
Vapnik (1963). Ruß and Kruse (2010) noted SVM as a common machine learning
model for predicting crop yield whereas Pant et al. (2021) have used SVMs for pre-
dicting agricultural yield. The goal of SVM is to obtain a function that minimizes
the gap between actual and predicted values. The nonlinear model that has been ex-
tensively used for modelling non-stationary time series variables and generated useful
results is a support vector. SVR builds linear regression functions as shown below:

ŷ = wT x + b (1)

Eq. 2 shows Vapnik’s linear e-Insensitivity loss function.

|y − ŷ|ϵ = {0 if |y − ŷ ≤ ϵ|y − f(xi, w)| − ϵ, otherwise} (2)

In the Eq. (1 and 2) ŷ represent dependent variables that are paddy, wheat and maize
production volume for a given input vector x. The linear regression ŷ is estimated by
simultaneously minimizing and the sum of the linear e-Insensitivity losses as shown
in eq. (iv). The constant c controls a trade-off between an approximation error and
the weight vector.

R = 1
2 ||w||2 + c

(
m∑
t

|y − ŷ|ϵ

)
(3)

Minimizing the risk R is equivalent to minimizing the risk shown in Eq. 4 under
the constraints depicted in Eq. 5 - 6. Here, ζi and ζ∗

i are surplus variables, one for
exceeding the target value by more than ϵ and the other for being more than ϵ below
the target.

R = 1
2 ||w||2 + c

(
m∑
t

|y − ζi + ζ∗|

)
(4)

(
wT Xi + b

)
− yi ≤ ϵ + ζi (5)

yi −
(
wT Xi + b

)
≤ ϵ + ζ∗

i (6)

ζi and ζ∗
i ≥ 0, i = 1, 2, 3...., m (7)

Decision Tree (DT): It is a supervised machine learning algorithm used to classify
and predict using the non-parametric model. Unlike other estimation tools, a DT
does not have a formula. Instead, it builds a tree such as the model of input and
its possible consequences. Studies such as Kumar et al. (2020), Pant et al. (2021),
and Rajeswari and Suthendran (2019) have used a DT regression model in predicting
crop yield.
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ŷ =
∑

i

(Wi ∗ fi (Xi)) (8)

Where, ŷ represents the expected value of the dependent variable ′y′ for a given input
vector X.

∑
i signifies the summation of all the individual nodes. Wi represents the

weight assigned to the prediction of the ith node in the tree. And fi (Xi) represents
the decision rule or function associated with the ith node or leaf in the DT. It takes
the input features Xi as input and produces a yield.

Random Forest (RF): RF is an ensemble machine learning tool that uses multiple
DTs to predict the targeted variable. Sometimes the single tree is not accurate in
predicting the actual value of the dependent variable because of confusion with noise
and pattern. Therefore, the creation of n tresses increases the chances of accurate
prediction where each tree makes an independent prediction, and the final prediction
is obtained by assigning weights and averaging them. Studies such as Dang et al.
(2021), Everingham et al. (2016), and Jeong et al. (2016) have used a rRF regression
model in predicting crop yield.
The formula for the RF regression can be expressed as;

ŷ = 1
T

∗
∑

i

(Wi ∗ fi (Xi)) (9)

Where ŷ represents the expected value (or mean) of the dependent variable y for
a given input vector X. T denotes the total number of trees in the RF ensemble.∑

i signifies the summation of all the individual trees in the RF. Wi represents the
weight assigned to the prediction of the ith DT in the RF. And fi(X) represents the
non-linear prediction function of the ith DT in the RF for the input vector X.

Multilayer perceptron (MLP) regressor : MLP is a type of artificial neu-
ral network algorithm that can learn complex relationships between input and yield
variables. It has an input, hidden and yield layer. The layer is composed of intercon-
nected neurons flowing from the input to the hidden and yield layers. Studies such as
Gonzalez-Sanchez et al. (2014), Piekutowska et al. (2021), and Ruß and Kruse (2010)
have used MLP regressor to predict crop yield. The equation of an MLP regressor
can be represented mathematically as follows:

ŷ = f (W2 ∗ f (W1 ∗ Xi + b1) + b2) (10)

Where, ŷ represent dependent variables that are paddy, wheat and maize produc-
tion volume. Xi represents independent variables that are area cultivated, average
temperature, rainfall, fertilizer, and BFIs etc. W1 and W2 are the weight matrices
that contain the weights for the connections between the input layer and the hidden
layer, and between the hidden layer and the yield layer, respectively. b1 and b2 are
the bias vectors associated with the hidden layer and the yield layer. The ′f ′ rep-
resents the activation function applied element-wise to the yield of each neuron in
the network. During training, the weights (W1 and W2) and biases (b1 and b2) are
adjusted through an optimization algorithm, such as back-propagation, to minimize
the difference between the predicted values (ŷ) and the actual values of the dependent
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variable. The activation function ′f ′ introduces non-linearity to the model, allowing
it to learn complex relationships between the inputs and the target variable. The
architecture for MLP regressor is,

Figure 2: MLP architecture for multivariate time series prediction

In the architecture presented in Figure 2, X1, X2, X3 .... Xn are input nodes. They
represent independent variables that are farm size, fertilizer, rainfall, temperature,
bank branches, inflation, exchange rate, inflation, capital expenditure, population
and per capita income. And ŷ1, ŷ2, and ŷ3 represent predicted variables that are
Paddy, Maize and Wheat. The remaining two are hidden layers.

Recurrent Neural Network (RNN): Lets denote the number of hidden layers
as L, where L = 1, 2, ...L. The equation for input to the first hidden layer is:

h1
t = Activation

(
W 1

ih ∗ xt + b1
ih + W 1

hh ∗ h1
t−1 + b1

hh

)
(11)

Now, forward pass equation from layer l to hidden Layer l + 1 would be;

h1+l
t = Activation

(
W 1+l

ih ∗ xt + b1+l
ih + W 1+l

hh ∗ h1+l
t−1 + b1+l

hh

)
(12)

And the equation from hidden to yield layer would be;

Ot = Who ∗ hl
t + bho (13)

Where, h1
t is the hidden state of layer l at time t. W l

ih and W l
hh are the weight matrices

for the input-to-hidden and hidden-to-hidden connections for layer l, respectively. bl
ih

and bl
ih are the bias vectors for the input-to-hidden and hidden-to-hidden connections
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for layer . Who is the weight matrix for the hidden-to-yield connection. bho is the
bias vector for the hidden-to-yield connection.

Convolutional Neural Network (CNN): The regression equation for the con-
volutional neural network is;

Yt = Activation(Wy ∗ f(ht) + by) (14)

Where, Yt is the predicted yield at time t, ht is the yield from the convolutional
layers, f(ht) is the operation that flattens or reshapes the yield ht as needed, Wy is
the weight matrix for the regression layer and by is the bias vector for the regression
layer.

Evaluation Measures

The study conducted by Van Klompenburg et al. (2020) highlighted Mean Abso-
lute Percentage Error (MAPE), Mean Absolute Error (MAE), relative Root Mean
Squared Error (rRMSE), Mean Squared Error (MSE) and Coefficient of Determina-
tion (R2) as the most preferred performance metrics for the evaluation of machine
learning models. Formulas of these evaluation measures are shown in the following
equations.

MAPE = 1
n

n∑
t−1

|yt − ŷt|
|yt|

∗ 100 (15)

MAE = 1
n

n∑
t−1

|yt − ŷt|
|yt|

(16)

rRMSE =

√√√√ 1
n

n∑
t=1

(
yt − ŷt

yt

)2
(17)

MSE = 1
n

n∑
t=1

(yt − ŷt)2 (18)

R2 = 1 − SSR

TSS
(19)

Where yt is actual and ŷt are the forecasted value.

RESULTS

The result of the study is presented in this section. Table 1 depicts major crop
yield, input factors and other variables. The average paddy yield is 2.54 tons per
hectare, with a standard deviation of 0.59, indicating a moderate level of variabil-
ity. Similarly, Maize and Wheat yields have mean values of 1.91 and 1.76 tons per
hectare, with standard deviations of 0.44 and 0.57, respectively. The average land
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area equipped for irrigation is 0.97 million hectares, with a standard deviation of
0.37, highlighting the extent and variability of irrigated land. The average number
of tractors is 3.2 thousand units, but the higher standard deviation of 4.6 suggests
significant variability in tractors across time. The table also presents information on
rainfall, temperature, bank branches, exchange rate, inflation, capital expenditure,
population and per capita income.

Table 1: Descriptive Statistics

Variables Mean Std. Dev.
Paddy Yield (Tons/Hectare) 2.54 0.59
Maize Yield (Tons/Hectare) 1.91 0.44
Wheat Yield (Tons/Hectare) 1.76 0.57
Paddy (Million Hectare) 1.43 0.11
Maize (Million Hectare) 0.74 0.17
Wheat (Million Hectare) 0.59 0.15
Land area equipped for irrigation (Million Hectare) 0.97 0.37
Tractors (Thousand units) 3.2 4.6
Road network (Km) 18.6 6.9
Fertilizer (1000 tons) 70.14 57.32
Average Temperature (Degree Celsius) 13.99 0.45
Rainfall (mm) 1293.43 147.72
Financial Deepening (Credit/GDP ratio) 30.16 25.05
New Bank Branches 227.08 441.14
Exchange Rate (NRS/USD) 55.03 34.93
Food and Beverage Inflation (%) 8.79 6.13
Capital Expenditure (% of GDP) 7.82 3.35
Population (Million) 21.28 5.22
Per Capita Income (USD) 420.62 367.29

Predictive Performance of Machine Learning Models

Fig. 3, 4 and 5 illustrate the predictive performance of six machine learning models
for yield over time. The graph depicts the actual and predicted crop yield across the
time frame of 1973 to 2021. In the figures, the train represents the training period,
and the test represents the testing period.
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Figure 3: Prediction results for paddy yield

The Figure 3, shows predictions of the first difference in paddy yield. During the
training period, all models (SVM, DT, RF, MLP, RNN, CNN) performed well, closely
following the actual values. However, in the testing period, the models’ performance
varies. The SVM shows reasonable predictions with some deviations. The DT strug-
gles significantly, while the RF and MLP exhibit noticeable divergences. The RNN
also shows reduced accuracy, and the CNN, though better than others, still has peri-
ods of deviation. Overall, these models face challenges in maintaining accuracy during
the testing period, highlighting potential overfitting or limitations in capturing yield
patterns.
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Figure 4: Prediction results for wheat yield

In Figure 4, the DT and RF models show good performance during training but
perform poorly during testing. Similarly, the SVM and MLP models exhibit accurate
predictions in the training phase but lack predictive power in the testing phase.
The RNN model displays significant fluctuations and inaccuracies, particularly in
the testing period. Conversely, the CNN model consistently delivers satisfactory
performance across both the training and testing periods, despite some errors in the
test phase.
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Figure 5: Prediction results for maize yield

In Figure 5, the SVM model provides decent predictions in the training phase but loses
accuracy in the testing phase. The MLP model displays significant errors during the
testing period, indicating poor generalization. The RNN model exhibits considerable
fluctuations and inaccuracies, especially in the testing period. The CNN model,
despite some errors in the test phase, demonstrates relatively consistent performance
across both the training and testing periods. DT and RF perform relatively better
in the testing period as compared to other models.
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Table 2: Performance Metrices

Product Model MAE MSE RMSE MAPE
Train Test Train Test Train Test Train Test

Paddy

SVM 0.10 0.19 0.02 0.04 0.13 0.21 3243.6 144.5
DT 0.00 0.21 0.00 0.05 0.00 0.23 0.0 193.4
RF 0.07 0.17 0.01 0.03 0.09 0.19 414.1 103.1
MLP 0.08 0.85 0.01 0.91 0.11 0.95 2428.2 1518.2
RNN 0.17 0.23 0.05 0.08 0.23 0.28 6182.0 346.1
CNN 0.10 0.43 0.02 0.25 0.15 0.50 827.2 731.3

Wheat

SVM 0.06 0.16 0.00 0.03 0.07 0.17 134.4 94.0
DT 0.00 0.21 0.00 0.05 0.00 0.23 0.0 137.5
RF 0.03 0.15 0.00 0.03 0.04 0.17 60.2 96.4
MLP 0.05 0.65 0.00 0.58 0.06 0.76 134.1 411.6
RNN 0.07 1.35 0.01 2.63 0.09 1.62 136.4 915.9
CNN 0.05 0.18 0.00 0.05 0.06 0.22 156.2 114.4

Maize

SVM 0.07 0.11 0.01 0.01 0.09 0.12 154.2 101.9
DT 0.00 0.10 0.00 0.01 0.00 0.11 0.0 94.1
RF 0.04 0.08 0.00 0.01 0.05 0.10 54.4 78.1
MLP 0.05 0.17 0.01 0.05 0.08 0.23 103.4 199.4
RNN 0.15 0.47 0.04 0.32 0.19 0.56 474.8 575.7
CNN 0.06 0.16 0.01 0.04 0.09 0.19 130.0 159.0

The Table 2 shows performance metrics of different machine learning models (SVM,
DT, RF, MLP, RNN, CNN) for predicting Paddy, Wheat, and Maize yields. For
Paddy, the RF performs best with a Test MAE of 0.17 and Test MAPE of 103.1,
while SVM and CNN show moderate errors, and MLP and RNN struggle with higher
errors. For Wheat, RF again excels with a Test MAE of 0.15 and Test MAPE of 96.4,
whereas SVM and CNN perform moderately, and MLP and RNN have significant
challenges. For Maize, RF and DT are most effective, with RF showing the lowest
Test MAE of 0.08 and Test MAPE of 78.1. SVM also performs well, while MLP
and RNN exhibit higher errors. Tree-based models likely perform well due to their
ability to handle non-linear relationships and interactions within the data, making
them well-suited for agricultural yield prediction. In contrast, RNN and MLP models
may struggle with capturing the complex temporal and spatial dependencies inherent
in crop yield data. Overall, RF is the most promising model across all crops, while
RNN and MLP struggle and CNN shows variable performance depending on the crop,
suggesting it may be better suited for specific patterns or dependencies.

Feature Importance

Since a superior fit was found only for RF and DT during the testing period, feature
importance was calculated using these two models. For each dependent variable, the
data was split into training and testing sets after scaling, and feature importances
were extracted.
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Table 3: Feature Importance

Features Paddy Maize Wheat
RF DT RF DT RF DT

Capital Expenditure 0.381 0.182 0.156 0.120 0.156 0.080
Banking Expansion 0.183 0.077 0.159 0.077 0.09 0.09
Area Cultivated 0.111 0.148 0.21 0.256 0.13 0.14
Food and Beverage Inflation 0.04 0.11 0.19 0.0665 0.174 0.189
Agricultural Mechanization 0.07 0.09 0.068 0.113 0.14 0.130
Temperature 0.04 0.075 0.06 0.054 0.064 0.12
Rainfall 0.11 0.185 0.054 0.183 0.140 0.098
Fertilizers 0.05 0.087 0.04 0.085 0.044 0.13

Table 3 indicates the significance of each variable in predicting agricultural produc-
tivity using both RF and DT models. For Paddy, Capital Expenditure emerges as the
most crucial factor in the RF model with a high importance value of 0.381, followed
by Banking Expansion and Area Cultivated. The DT model also places importance
on Capital Expenditure (0.182) but highlights Area Cultivated (0.148) as more sig-
nificant. For Maize, the Area Cultivated is the most influential variable in both RF
(0.21) and DT (0.256) models, with Capital Expenditure and Banking Expansion also
showing significant importance. In the case of Wheat, Food and Beverage Inflation
stands out as the most important feature in both RF (0.174) and DT (0.189) models.
Capital Expenditure and Agricultural Mechanization are also critical factors in the
RF model, while the DT model assigns considerable importance to Area Cultivated
and Agricultural Mechanization. Interestingly, variables like Temperature and Fer-
tilizers have lower importance across both models for all crops, indicating a lesser
impact on productivity predictions.

DISCUSSION AND CONCLUSION

Predicting crop yield is challenging because of several factors both directly and indi-
rectly affecting their productivity. This study builds a predictive model using three
major crops and fourteen key indicators driving their productivity. Six supervised
machine learning algorithms, SVM, DT, RF MLP, RNN and CNN, were used. Ex-
periments were conducted using 49 years of historical data from 1973 to 2021 on
three principal crops — paddy, wheat, and maize; and the model performance was
measured using MSE, MAE, MAPE, and rMSE. DT and RF have been found to be
the most precise, followed by SVM and CNN. The outcomes are robust across crop
types. Additionally, variables such as area cultivated, capital expenditure, banking
expansion, rainfall, temperature and fertilizers have been found to be the most im-
portant features for predicting crop yield. Surprisingly, feature importance did not
show irrigation, road network and financial deepening as key drivers of yield. The
DT observed a MAE of 21%, for paddy and wheat and 10% for maize. Similarly,
RF found an MAE of 17% for paddy, 15% for wheat and 8% for maize. Similarly,
MSE is lowest for DT and RF for all crop types. Different from our findings Kung
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et al. (2016) observed the error of only 1.3% on the general and it identified agri-
cultural, meteorological and harvest data as key features. Similarly, Pantazi et al.
(2016) obtained an accuracy of 81.6% while estimating the wheat yield within field
variation. Su et al. (2017) modelled for predicting rice yield and found significantly
low rMSE and found soil quality and surface weather as major features. Amaratunga
et al. (2020) observed the mean square error of 2% to as high as 38% in ANN. P. K.
Singh et al. (2022) observed relatively low MAPE and MSE when applied SVM. Kang
et al. (2020) XGBoost algorithm outperforms other algorithms both in accuracy and
stability, while deep neural networks such as LSTM and CNN are not advantageous.
As per Grinsztajn et al. (2022) tree based model like RF and DT performs better
due to their ability to handle non-linear relationships and robustness to outliers.

Research indicates that the area cultivated, the use of fertilizers, and agricultural
mechanization are key drivers of crop yield. To improve yields, farmers should pri-
oritize allocating more resources towards commercial farming practices, investing in
essential agricultural equipment such as tractors, and ensuring the timely and ad-
equate application of fertilizers. Additionally, the GoN has been investing billions
of rupees in agricultural subsidies. To further boost crop yields, it is recommended
that GoN redirect subsidies towards the acquisition of agricultural machinery, guar-
antee the timely and sufficient supply of fertilizers to farmers, and establish more
bank branches in agricultural areas to facilitate easier access to financial services and
support. By focusing on these areas, both farmers and the government can work
together to directly and indirectly enhance crop yields, leading to increased agricul-
tural productivity and food security. Regarding the limitations, this study could not
incorporate key indicators like agricultural tools, fertilizer type, and policy variables,
and the study used yearly data for only 49 years due to the unavailability of data.
Future research in this field could incorporate variables like irrigation, agricultural
tools, fertilizer type, and other socio-economic and policy variables for improved pre-
diction capacity. Future research can also utilize district-wise panel data as both
temporal and spatial data would provide sizeable data for the model to train itself
and provide a superior fit. Based on the findings of this study, diverting resources
to increasing cultivation area, capital expenditure, banking expansion, climatic con-
ditions, and fertilizers is likely to help increase yield. Similarly, instead of applying
only a linear prediction model, it is recommended to use a tree-based model like DT
and RF for a superior fit.

For future research, one of the most challenging aspects will be obtaining crop-specific
data. The reliability of predictions will significantly improve with detailed crop-wise
input data such as irrigation availability, fertilizer use, seed quality, labour, and aver-
age farm size. Variables like rainfall, temperature, and prices, which affect yield, are
inherently random and exhibit stochastic properties. Integrating stochastic models
like Vasicek, Heston, or Stochastic Block Allocation Regression (SBAR) alongside
crop-specific variables presents both opportunities and challenges for future research.
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