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ABSTRACT 

This paper uses several standard univariate time series models and out-of-sample 

forecasts to assess their forecasting ability with year-on-year monthly inflation in Nepal 

over the period mid-August 2002 to mid-March 2021, corresponding to Nepal’s fiscal 
year. These include conventional models based on seasonal and monthly dummies, Holt-

Winters method with seasonality, standard ARIMA models, autoregressive models with 

different error structures and more sophisticated unobserved component model. It finds 
that an autoregressive model with AR(1) errors consistently outperforms its competing 

models - based on the mean squared forecast error (MSFE) and the direction of change. 

The results are robust to forecast horizons, out-of-sample forecast period, different lags 
structures and tests of predictability. 
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I.   INTRODUCTION 

Maintaining price stability is one of the major objectives of Nepal Rastra Bank (NRB) along 

with maintaining favorable balance of payment. For the conduct of monetary policy, central 

banks need to be forward-looking due to the lag in the monetary transmission mechanism. 

Inflation forecasting provides the basis to target the appropriate levels of other monetary and 

financial variables, such as money supply and credit. Reasonably accurate inflation 

forecasting is, thus, a sine qua non for the successful implementation of the monetary policy.  

This paper utilizes the univariate time series techniques to model and forecast inflation in 

Nepal. The univariate time series analysis consists of a single variable ordered sequentially 

over uniform time intervals. In contrast to structural models, time series models are often a-

theoretical in nature which attempt to capture empirical regularities in the data. Modelling the 

univariate series involves the analyses of its own current and past values and the error terms 

that are particularly useful for forecasting purposes (Enders, 2004; Hamilton, 1994; Chatfield, 

2000).  

There are several studies which examine the determinants of inflation in Nepal.1 As Nepalese 

currency is pegged to the Indian rupee, the major variable influencing inflation in Nepal is the 

inflation rate in India among others. These econometric models, though useful in explaining 

the past behavior of inflation, have limited use in forecasting inflation. For forecasting 

inflation, one needs to forecast the explanatory variables, which increases the possibility of 

errors as the number of variables increase. In contrast to previous studies, this article focuses 

on exploiting the properties of time series data on inflation. This article, to the author’s best 

knowledge, is the first attempt to rigorously model inflation in Nepal using a more general 

univariate time series approach. 

The article presents twelve competing models starting from simple specifications to 

progressively complex ones. The first set estimates the models with different seasonal 

dummies and time trend. The second set utilizes the Holt-Winters method with seasonality. 

The third set imposes different error structures on the autoregressive models. Finally, the last 

model uses the state-of-the-art unobserved component model. The pseudo out-of-sample 

forecasting exercise is done and the Mean Square Forecast Error criterion is used to select the 

model with best forecasting model.  

The remainder of the paper is structured as follows. Section two provides the description of 

the data. Section three examines the alternative theoretical models and estimation method of 

these models. Section four presents result of the estimation and Section five conducts a brief 

sensitivity analysis of the results. Finally, section six concludes.    

                                                             
1  See for example, the report Inflation in Nepal for a literature review (Nepal Rastra Bank, 2007).  
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II.   DATA   

The data consist of a single time-series monthly inflation data from 2002 (mid-July) to 2021 

(mid-March), corresponding to Nepalese fiscal year (that is 224 observations in total). The 

monthly inflation is computed from the year-on-year change in the Consumer Price Index 

(CPI). The CPI data series is taken from various issues of Quarterly Economic Bulletin 

published by the NRB.2 For example, the inflation for first month of 2002 refers to the change 

in the CPI of mid-August, 2002 to the CPI of mid-August 2001. Taking year-on-year change 

inflation is one of the common methods to remove seasonality.3   

The time series plot of the inflation data reveals the persistence and discernible upward trend 

up to mid-2008, reaching its peak (Figure1). Though the inflation declined afterwards, there 

does not appear a trend up to 2016, after which inflation declined sharply. Table 1 provides 

the major descriptive statistics of the inflation data series.  

Table 1: Summary Statistics (in percent) 

Variable Mean Standard Deviation Minimum Maximum 

Inflation  7.09 2.82 1.31 13.77 

 

Figure 1: Monthly year-on-year inflation  

 

Note: The monthly inflation refers to the year-on-year change in the Urban CPI from mid-August, 

2002 to Mid-March, 2021 according to the Nepalese fiscal year, which starts from around Mid-July.  

                                                             
2  The Quarterly Economic Bulletin published by Nepal Rastra Bank contains various quarterly and monthly 

CPI series. For the present analysis, I use the National Urban CPI to compute the monthly inflation series.     

3  I also tried the annualized data which better reflects the subsequent changes in monthly inflation. However, 

the annualized data showed a significant degree of variation, which is not appropriate to forecast inflation.  
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III.   MODEL AND ESTIMATION METHOD  

This section presents competing models starting from a simple specification with the linear 

time trend and different seasonal dummies. The second model is based on Holt-Winters 

method with seasonality. The third core set comprise of autoregressive models with four 

different error structures. Finally, the results of these models are compared with the integrated 

moving average models. A one-step ahead recursive pseudo out-of-sample forecast is done for 

all models beginning from T0= 48 months. 

The mean square (forecast) error (MSFE) is computed for all models. The mean square error 

(MSE)4 is one of the popular criteria for model selection (Diebold, 2004).  

The model with best forecast performance is selected based on the minimum MSFE.    

3.1 Seasonal Dummy variables model 

The first set of following four models are used for the forecasting exercises: Model (1) with 

the time trend and the fourth quarter dummy, Model (2) with the time trend and twelfth month 

(month of Ashad) dummy, Model (3) with time trend and four quarterly dummies, Model (4) 

with time trend and twelve monthly dummies.   

  𝑦𝑡 =  𝑎0 + 𝑎1𝑡 + 𝛼4𝐷4𝑡 + 𝜀𝑡 ………. (1) 

  𝑦𝑡 =  𝑎0 + 𝑎1𝑡 + 𝛼4𝑀12𝑡 + 𝜀𝑡 ………. (2) 

  𝑦𝑡 =  𝑎1𝑡 + ∑ 𝛼𝑖𝐷𝑖𝑡
4
𝑖=1  +  𝜀𝑡 ………. (3) 

  𝑦𝑡 =  𝑎1𝑡 + ∑ 𝛽𝑖𝑀𝑖𝑡
12
𝑖=1  + 𝜀𝑡, ………. (4) 

where 𝑀𝑖𝑡 is dummy variable that denotes month of the year, i.e. 𝑀𝑖𝑡 = 1 if period t is the i-th 

month and 𝑀𝑖𝑡 = 0 otherwise. Similarly, 𝐷𝑖𝑡 = 1  if t is in the i-th quarter and 𝐷𝑖𝑡 = 0 

otherwise. Also 𝐸𝜀𝑡 = 0 for all t = 1, …, T.  

These models are estimated using the recursive Ordinary Least Squares (OLS) method.    

3.2 Holt-Winters method with seasonality 

The second set of alternative specification involves a more refined method using the Holt-

Winters method with seasonality. Holt-Winters method extends the single exponential 

smoothing to linear exponential smoothing which is appropriate to forecast data with trends 

(Montgomery, Jennings, & Kulahci, 2015). The simple additive smoothing is suitable for data 

that do not seem to have a deterministic trend.    

                                                             

4  The mean square error, =
∑ 𝑒𝑡

2𝑇
𝑖=1

𝑇
 , where T is the sample size and et is the forecast error. 
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Assuming that the data has not only a slowly evolving local level, but also a trend with a 

slowly evolving local slope, the standard Holt-Winters method with seasonality can be 

expressed as a system of four equations (Montgomery, Jennings, & Kulahci, 2015):  

  𝑦𝑡 =  𝜇𝑡 + 𝜆𝑡𝑡 + 𝜀𝑡  ,        𝜀𝑡  ~ N(0, 𝜎𝜀
2) 

  𝜇𝑡 = ì𝑡−1 + 𝜂𝑡 ,                  𝜂𝑡  ~ N(0, 𝜎𝜂
2 ) ………. (5) 

  𝜆𝑡 = 𝜆𝑡−1 + 𝜈𝑡  ,                  𝜈𝑡  ~ N (0, ó𝜈
2 ) 

 �̂�𝑡|𝑡−1 = 𝐿𝑡−1 + 𝑏𝑡−1 + 𝑆𝑡−𝑠 , 

Where �̂�𝑡|𝑡−1 is the point forecast, s = periodicity of seasonality (s = 12 for our monthly data) 

and the error terms are independent of each other at all leads and lags. 

The level, slope (trend) and seasonality are updated, respectively, as follows: 

𝐿𝑡 =  𝛼(𝑦𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1)  

𝑏𝑡 =  𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

𝑆𝑡 =  𝛾(𝛾𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑠 

The three components are initialized at t=s as follows:  

𝐿𝑠 =
1

𝑠
 (𝑦1 + ⋯+𝑦𝑠), 

𝑏𝑠 = 0, 

𝑆𝑖 = 
𝑦𝑖

𝐿𝑠
 𝑓𝑜𝑟 𝑖 = 1,… . , 𝑠.  

Then the one-step-ahead forecast is given by 

�̂�𝑇+1|𝑇 =  𝐿𝑇 + 𝑏𝑇 + 𝑆𝑇+1−𝑠 .  

In general, the h-step ahead forecast is given by  

�̂�𝑇+ℎ|𝑇 = 𝐿𝑇 + ℎ𝑏𝑇 + 𝑆𝑇+ℎ−𝑠 . 

The specifications above assume that the values of the smoothing parameters (𝛼,𝛽, 𝛾) are 

given. One way to estimate the model is to assume some initial values of the parameters and 

then choose the values that minimizes the MSFE. Alternatively, the optimal values of 

smoothing parameters can be obtained by numerical optimization method.  
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3.3 Autoregressive models with different error structures 

The next set of models consist of the autoregressive models with different error structures. 

The motivation for this choice comes from the fact the series depicts a high degree of 

persistence. Moreover, the errors from the simple AR(1) models reveal that the errors are 

autocorrelated providing an additional source of information to improve the forecasting 

performance of the model. The following four set of AR(1) models with different error 

structures are considered: Model (6) has the standard assumption that the errors are normally 

distributed, Model (7) assumes that the errors have t-distribution.  

Further, due to high persistence in the data, we assume the errors are autocorrelated with an 

AR(1) process (Model 8), Model (9) assumes that the errors follow an MA(1) process, and 

finally Model (10) is based on the state-space representation or the unobserved component 

model. The likelihood estimation approach is adopted to estimate the models. The 

concentrated log- likelihood function is derived and then the maximum likelihood estimates 

(MLE) for the coefficients are estimated using the using the simplex optimization method 

(Davidson & MacKinnon, 2003).  

For estimation of Model (7) and Model (8), the log-likelihood function is derived using the 

standard normal distribution and t-distribution respectively.   

3.4 AR(1) model with normal and t-distributed errors  

Consider the AR(1) model with drift  

  𝑦𝑡 = µ + 𝜌𝑦𝑡−1  +  𝜀𝑡  , ………. (6) 

where 𝜀𝑡 are iid 𝑁(0, 𝜎2). 

Similarly, consider alternative AR(1) model with t-distributed errors 𝜂𝑡.  

  𝑦𝑡 = µ + 𝜌1𝑦𝑡−1  +  𝜂𝑡  , ………. (7) 

The derivation of the log-likelihood function is relatively straightforward (see, Hamilton 

(1994) for the derivation).  

3.5 AR(1) model with AR(1) errors  

The derivation of the log-likelihood function for the AR(1) model with AR(1) errors can be 

obtained as follows (Davidson & MacKinnon, 2003; Hamilton, 1994): 

Consider the AR(1) model with drift  

  𝑦𝑡 = µ + 𝜌𝑦𝑡−1  +  𝜀𝑡  , ………. (8) 
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Where the errors follow an AR(1) process:  

𝜀𝑡 = 𝜙𝜀𝑡−1  +  𝑢𝑡 ,  

For t=1, …, T, 𝜀0 = 0 , and 𝑢𝑡 are iid 𝑁(0, 𝜎2).  

Given the observations = (𝑦1, … , 𝑦𝑇)′ , and the initial 𝑦0 , the MLE for 𝜙, 𝜇, 𝜌 𝑎𝑛𝑑 𝜎2 can be 

obtained as follows:  

Write the model 8 as a linear regression:  

𝒚 = 𝑿𝜷 +  𝜺 , where 𝜷 = (𝜇, 𝜌 )′,  

𝒚 = (

𝑦1

𝑦2

⋮
𝑦𝑇

) ,  𝑿 = (

1 𝑦0

1 𝑦1

⋮ ⋮
1 𝑦𝑇−1

) ,  𝜺 =  (

𝜀1

𝜀2

⋮
𝜀𝑇

) .  

To derive the log-likelihood, we need the joint distribution of  . Rewriting the system of errors 

in matrix form as :  

(

 
 

1 0 0 ⋯ 0
−𝜙 1 0 ⋯ 0
0 −𝜙 1 ⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ −𝜙 1)

 
 

 

(

 
 

𝜀1

𝜀2

𝜀3

⋮
𝜀𝑇)

 
 

= 

(

 
 

𝑢1

𝑢2

𝑢3

⋮
𝑢𝑇)

 
 

  ,  

i.e. 𝐇𝜙𝛆 = 𝐮 . Since |𝐇𝜙| = 1 , 𝐇𝜙 is invertible. Hence,  

𝜺 ∼ 𝑁 (0, 𝜎2(𝐇𝜙
′ 𝐇𝜙)

−1
 ). 

Therefore, it follows that  

(𝒚 | 𝜷, 𝜎2) ∼ 𝑁 (𝑿𝜷, 𝜎2(𝐇𝜙
′ 𝐇𝜙)

−1
 ). 

So the log-likelihood is  

𝑙(𝜷, 𝜎2 |𝒚) = − 
1

2
log |2𝜋𝜎2 (𝐇𝜙

′ 𝐇𝜙)
−1

| −
1

2𝜎2
 (𝒚 − 𝑿𝜷)′𝐇𝜙

′ 𝐇𝜙(𝒚 − 𝑿𝜷) 

                      = − 
𝑇

2
log(2𝜋𝜎2) −

1

2𝜎2
 ((𝒚 − 𝑿𝜷)′𝐇𝜙

′ 𝐇𝜙(𝒚 − 𝑿𝜷). 

Differentiating the log-likelihood with respect to 𝜷 and solving the first order condition for 𝜷, 

we get 

�̂�𝜙 = (𝐗′𝐇𝜙
′ 𝐇𝝓𝐗)−𝟏𝐗′𝐇𝜙

′ 𝐇𝜙𝐲 ,                                (…) 

Similarly, differentiating the log-likelihood with respect to 𝜎2 and solving the first order 

condition, we obtain 
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�̂�𝜙
2 = 

1

𝑇
 (𝑦 − 𝑋�̂�𝜙)

′
𝐇𝜙

′ 𝑯𝜙(𝐲 − 𝐗�̂�𝜙 ) 

The MLE for the parameters is obtained by using the unconstrained nonlinear optimization 

method.5 Given the MLE ( �̂�, �̂�, �̂� ) of the model parameters we can produce the one-step-

ahead forecast �̂�𝑡+1 as 

 �̂�𝑡+1 = �̂� + �̂�𝑦𝑡 + �̂�𝜀�̂�  , 

As before, the recursive pseudo out-of-sample one-step-ahead forecasting is done beginning 

at T0 =48 and MSFE is computed.      

3.6 AR(1) model with MA(1) errors   

The third model in the set assumes that the errors in the AR(1) follows an MA(2) process. The 

log-likelihood function for the model can be obtained as follows:     

Consider the following AR(1) model with MA(1) errors: 

  𝑦𝑡 = µ + 𝜌𝑦𝑡−1  +  𝜀𝑡 ………. (9) 

                   𝜀𝑡 = 𝑢𝑡 + 𝜓𝑢𝑡−1 ,  

For t=1, …, T, 𝑢0 = 0 , and 𝑢𝑡 are iid 𝑁(0, 𝜎2) for t ≥ 1.  

Given the observations = (𝑦1, … , 𝑦𝑇)′ , and the initial 𝑦0 , the log-likelihood function can be 

derived by similar method to the model with AR (1) errors, the only difference being the 

distribution of error terms 𝜀. Rewriting the system of errors in matrix form as:  

(

 
 

𝜀1

𝜀2

𝜀3

⋮
𝜀𝑇)

 
 

=  

(

 
 

1 0 0 ⋯ 0
𝜓 1 0 ⋯ 0
0 𝜓 1 ⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ 𝜓 1)

 
 

 

(

 
 

𝑢1

𝑢2

𝑢3

⋮
𝑢𝑇)

 
 

 , 

i.e., 𝜺 =  𝐇𝜓𝐮 and 𝜺 ∼ 𝑁(0, 𝜎2(𝐇𝝍𝐇ø
′  ). Therefore, it follows that 

(𝒚 |𝜓, 𝜷, 𝜎2) ∼ 𝑁(𝑋𝛽, 𝜎2𝐇𝝍𝐇𝜓
′ ),  

and the log-likelihood is (since |𝐇ø|= 1):  

𝑙(𝜓, 𝜷, 𝜎2 |𝒚) = − 
1

2
log |2𝜋𝜎2 𝐇𝝍𝐇𝜓

′ | −
1

2𝜎2
 (𝒚 − 𝑿𝜷)′(𝐇𝝍𝐇𝜓

′ )−1(𝒚 − 𝑿𝜷) 

                                                             
5  The optimization procedures presents the danger of being trapped into a local maximum depending on the 

initial values assigned to the log-likelihood function. In order to ensure the maximum is the global one, we 

construct a rough grid using grid search method to obtain good starting values. Moreover, the concentrated 

likelihood graph will also be plotted for visual inspection.   
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                           = − 
𝑇

2
log(2𝜋𝜎2) −

1

2𝜎2
 (𝒚 − 𝑿𝜷)′(𝐇𝝍𝐇𝜓

′ )−1(𝒚 − 𝑿𝜷). 

To obtain the MLE, first concentrate the log-likelihood. Given 𝜓, the MLE for 𝜷 and 𝜎2 can 

be obtained analytically through first order conditions:  

�̂�𝜓 = (𝐗′(𝐇𝝍𝐇𝜓
′ )−1𝐗)−1𝐗′(𝐇𝝍𝐇𝜓

′ )−1𝐲,    

�̂�𝜓
2 =  

1

𝑇
 (𝑦 − 𝑋�̂�𝜓)

′
(𝐇𝝍𝐇𝜓

′ )−1(𝐲 − 𝐗�̂�𝜓 ) 

The parameters here also are obtained using the numerical optimization method similar to 

Model 8. The one-step ahead forecast �̂�𝑡+1 can be obtained as follows: 

 �̂�𝑡+1 = �̂� + �̂�𝑦𝑡 + �̂��̂�𝑡 . 

3.7 The Unobserved Component Model  

In this model, I estimate a state space model allowing an additional channel for persistence. 

Consider the following state space model:  

  𝑦𝑡 − 𝜏𝑡 = 𝜌(𝑦𝑡−1 − 𝜏𝑡−1) + 𝜀𝑡     𝜀𝑡~𝑁(0, 𝜎2) ………. (10) 

             𝜏𝑡 = 𝜏𝑡−1  +  𝑢𝑡            𝑢𝑡~𝑁(0,𝜔2) , 

where the state equation is initialized with 𝜏1 ~𝑁(0, 10), 𝜔2 = 0.52 and 𝜏0 = 0  without loss 

of generality. Suppose we observe  𝑦0, 𝑦1 … ,𝑦𝑇 . For later reference, let 𝒚 = (𝑦1, … ,𝑦𝑇)
′
. 

Then the full sample is used to compute the MLE for 𝜏, 𝜌 and 𝜎2 as follows:  

Equation 10 can be written as 

𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝜏𝑡 − 𝜌𝜏𝑡−1 + 𝜀𝑡       

For 𝑡 = 1, 𝑦1 = 𝜏1 + 𝜀𝑡      

For 𝑡 = 2, 𝑦2 − 𝜌𝑦1 = 𝜏2 − 𝜌𝜏1 + 𝜀2 ,   and so on.  Therefore, Equation (9) can be written in 

matrix form as 

[
 
 
 
 

1 0 0 ⋯ 0
−𝜌 1 0 ⋯ 0
0 −𝜌 1 ⋯ 0

⋮ ⋱ ⋮
0 0 … −𝜌 1]

 
 
 
 

[
 
 
 
 
𝑦1

𝑦2

𝑦3

⋮
𝑦𝑇]

 
 
 
 

=

[
 
 
 
 

1 0 0 ⋯ 0
−𝜌 1 0 ⋯ 0
0 −𝜌 1 ⋯ 0

⋮ ⋱ 0
0 0 … −𝜌 1]

 
 
 
 

[
 
 
 
 
𝜏1

𝜏2

𝜏3

⋮
𝜏𝑇]

 
 
 
 

+

[
 
 
 
 
𝜌(𝑦0)

0
0
⋮
0 ]

 
 
 
 

+

[
 
 
 
 
𝜀1

𝜀2

𝜀3

⋮
𝜀𝑇]

 
 
 
 

  

𝐇𝛒𝐲 = 𝐇𝛒𝛕 + �̃� + 𝛆 , where the notations denote the respective matrices. Therefore, 

𝐲 = 𝛕 + 𝐇𝛒
−𝟏�̃� + 𝐇𝛒

−𝟏𝛆 , 
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𝐲 = 𝛂 + 𝛕 + 𝐇𝛒
−𝟏𝛆 , where 𝛂 = 𝐇𝛒

−𝟏�̃� 

The MLE for 𝛕 can be computed analytically given 𝜌 and 𝜎2 as (set τ0 = 0: 

�̂� =  
1

𝜎2
𝐊−1𝐇𝜌

′ 𝐇𝜌(𝒚 − 𝜶),  

where 𝐊 = 𝐇𝜌
′ 𝐇𝜌/𝜎2 + 𝐇′𝛀−1𝐇,𝛀 = diag(𝑉𝜏 , 𝜔

2, … , 𝜔2), 𝛂 = 𝐇𝛒
−𝟏�̃�, 

H=

[
 
 
 
 

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋱ ⋮
0 0 … −1 1]

 
 
 
 

,   𝐇𝛒 =

[
 
 
 
 

1 0 0 ⋯ 0
−𝜌 1 0 ⋯ 0
0 −𝜌 1 ⋯ 0

⋮ ⋱ ⋮
0 0 … −𝜌 1]

 
 
 
 

,  �̃�= 

(

 
 

𝜌𝑦0

0
0
⋮
0 )

 
 

 

The one-step-ahead point forecast can be obtained as  

�̂�𝑡+1 = �̂�𝑇 + �̂�(𝑦𝑇 − �̂�𝑇  ). 

IV.   RESULTS 

This section presents the estimation of the different models mentioned in section three. The 

first set of four models are simple with a time trend and various seasonal dummies. Model (1) 

has a time trend and a fourth quarter dummy; Model (2) has a time trend and last month 

dummy; Model (3) has a time trend and four quarterly dummies; finally, Model (4) has a 

trend and twelve monthly dummies. Figure 3 plots the graphs of the one-step ahead out-of-

sample forecasts beginning at for the models. The graphs reveal that all four models perform 

poorly in terms of mimicking the actual data. Particularly, the models fail to predict the 

downturns during 2010–2012 and slightly increasing trend upward from 2013 onwards.  
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Figure 3: Out-of-sample forecasts under four models 

 

The performance of the models is compared in terms of MSFE for the out-of-sample 

forecasting. The MSFEs of the models with one-step ahead forecast are given in Table 2.  

Table 2: Mean-Square Forecast Errors for different models 

Specification Model 1 (time 

trend and a fourth 

quarter dummy)   

Model 2 (time 

trend and 

twelfth month 

dummy) 

Model 3 (time 

trend quarterly 

dummies)   

Model 4 (time 

trend and monthly 

dummies) 

MSFE 9.4536 9.4580 9.5893 10.1821 

 

Second, in an attempt to improve the forecasting model, the Holt-Winters method with 

seasonality is estimated (Model 5). The optimal smoothing parameters for the trend, seasonal 

and cyclical components (namely alpha, beta and gamma) are obtained through optimization 

method minimizing the MSFE. The Holt-Winters with seasonality performs significantly 

better than the seasonal specifications with MSFE of 1.53 (Figure 4). The out-of-sample 

forecast closely mimics the actual price. In particular, the method is able to capture the 

cyclical movements of CPI, specially 2010 onwards.  
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Figure 4: Out-of-sample forecast with Holt-Winters with Seasonality6 

 

Note: The optimal values of the parameters that minimizes the MSFE are alpha=0.4; beta=0.3;    

gamma=0.1. 

To improve the forecasting, three autoregressive models with different error structures are 

estimated. One of the prerequisites to fit autoregressive models is that the data should be 

stationary. The Augmented Dickey fuller test with drift and maximum lags of 12 months 

show that the series is stationary at 5 percent level of significance. Moreover, the correlogram 

plot also exhibit the autocorrelations that die out fairly quickly as number of lags increases. 

The first specification assumes that the errors follow white noise (Model 6). The maximum 

likelihood estimates for this model 𝜇, 𝜌, 𝜎2 are respectively 0.3949, 0.9489 and 0.6638. 

Similarly, the maximum likelihood estimates for the model with t-distributed errors (Model 7)  

𝜇, 𝜌, 𝜎2 are respectively 0.3833, 0.9485 and 0.5381. There is not much difference between 

these models in terms of forecasting performance which is evident from their plots and similar 

values of MSFE (Table 3).  

The third model assumes that the error follow AR(1) process without drift (Model 8). First, 

we find the value of 𝜙 that maximizes the concentrated log-likelihood function 𝑙𝑐(𝜙|𝒚) =

𝑙(𝜙, �̂�𝜙 , �̂�𝜙
2|𝒚) with respect to 𝜙. The parameters of the models are estimated using the 

unconstrained optimization procedure as mentioned in Section 3. The maximum likelihood 

estimates for 𝜇, 𝜌, 𝜎2 turns out to be 0.6547, 0.9132 and 0.6153 respectively. The 

corresponding log-likelihood value is -239.0973. The optimization procedures presents the 

danger of being trapped into a local maximum depending on the initial values assigned to the 

log-likelihood function. In order to ascertain the global maximum, the concentrated log-

likelihood function is plotted against the possible values of 𝜙 (Appendix 2).     

                                                             
6  The optimal values of the parameters that minimizes the MSFE are alpha=0.4; beta=0.3; gamma=0.1.  
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The fourth specification assumes that the errors are MA (1) process (Model 9). Similar to 

Model 8, we find the value of 𝜓 that maximizes the concentrated log-likelihood defined in 

Section 3.6. The values of the parameters are �̂� = 0.1903 , �̂� = 0.4282   , �̂� =

0.9405   and �̂�2 = 0.6324. In order to ensure the maximum is the global one, concentrated 

likelihood graph is plotted for the Models 8 (Appendix 3). The out-of-sample forecasts using 

AR models with different error structures are given in Figure 5.  

Figure 5 : Out-of-sample forecasts using AR models with  

different error structures 

 

The out-of-sample forecasts of different AR models show that there is a high degree of 

persistence in the series. As a result, all three AR models forecast the CPI series very well. 

Out of these, model 8, namely the model with AR(1) errors (without drift) mimics the data 

well with the lowest MSFE (Table 3).  

Table 3: Mean-Square Forecast Errors for different AR models 

Specification Model 6 (with 

normal errors)   

Model 7 (with t-

distributed errors)   

Model 8 (with 

AR(1) errors) 

Model 9 (with MA(1) 

errors)   

MSFE 0.6302 0.6296 0.6040 0.6162 

 

Finally, further complex model, namely the unobserved component model or the state space 

form (Model 9) is estimated. The out-of-sample forecast graph of the model is given in Figure 

6.  
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Figure 6: Out-of-sample forecasts using the unobserved component model 

  

The forecast value mimics the actual data very well. The MSFE for the unobserved 

component model is 0.6331, similar to AR models. Allowing for an additional channel for 

persistence through 𝜌(𝑦𝑡−1 − 𝜏𝑡−1) does not seem to improve the forecast performance, the 

MSFE for the unobserved component model is higher than that AR model with AR(1).  

V.   SENSITIVITY ANALYSIS 

The robustness or the sensitivity of the forecast results is tested using different out-of-sample 

forecasting period and also forecast horizon. The result remains robust using a shorter out-of-

sample period and also using different forecast horizon. Additionally, the forecast 

performance from the standard ARIMA models are also compared.  

In particular, the apparent unit root in the inflation series,7 and the negative first-order 

autocorrelations, and generally small higher-order autocorrelations, of the inflation suggest 

that the inflation process might be well described by the IMA(1,1) process or the IMA(1,2). 

Stock and Watson have shown that the IMA(1,1) process has the best ability to forecast 

inflation in the U.S. (Stock & Watson, 2007). The MSFE for IMA(1,1) and IMA(1,2) are 

respectively 0.6089 and 0.5950, which are quite close to the MSFEs of the autoregressive 

models (Figure 7).  

                                                             
7  I estimated the standard ARIMA(p,d,q) model of various orders using the Box-Jenkins approach, that is 

model identification, estimation and diagnostic checking (Box & Jenkins, 1976). Specifically, after 

inspecting the autocorrelogram and partial autocorrelograms, ARIMA(1,1,1), ARIMA(1,1,2). However, the 

coefficients are not significant.      
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Figure 7: The out-of-sample forecast for the IMA models 

 

VI.   CONCLUSION 

The paper presents competing and progressively complex univariate time series models to 

forecast inflation in Nepal. The paper finds that there is a high degree persistence of inflation 

in Nepal implying that it takes longer for the series to return to its mean after a shock. The 

forecasting performance of the model is tested in terms of Mean Square (Forecast) Errors for 

the out-of-sample forecast period. The autoregressive model with AR(1) errors performs best 

compared to more sophisticated models in terms of mean squared error, which also turns out 

be a parsimonious model. This model is quite general and can reliably be used to forecast 

inflation in Nepal.  
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Appendix 1 

Monthly Inflation (year-on-year change in CPI) series 

Year                    

    Month Aug Sept Oct Nov Dec Jan Feb March  April May  Jun July 

2002 4.24 3.27 2.98 2.21 2.73 3.27 4.59 5.24 8.14 7.72 6.58 6.09 

2003 5.36 5.19 5.65 5.81 4.90 4.96 4.73 4.36 1.72 1.31 1.84 2.02 

2004 2.38 2.63 2.61 2.68 3.11 4.59 5.70 5.75 5.84 6.42 6.19 6.65 

2005 7.29 8.18 7.82 8.52 8.81 6.96 5.82 7.66 7.91 9.15 9.11 8.27 

2006 7.26 6.64 7.54 7.11 7.28 7.62 8.02 6.20 5.63 4.64 4.45 5.09 

2007 5.63 6.05 5.43 5.31 4.63 4.73 5.27 6.05 7.92 8.27 10.10 10.69 

2008 11.85 12.49 13.28 13.73 13.43 13.77 13.20 12.82 11.58 12.44 11.98 11.09 

2009 10.13 9.18 8.61 9.15 10.32 10.72 10.95 9.96 9.77 8.87 8.25 9.03 

2010 9.50 8.57 8.76 8.38 9.47 11.26 10.11 10.59 10.58 9.37 8.69 9.58 

2011 7.66 8.51 8.92 8.43 7.52 6.77 7.06 7.05 7.51 8.74 9.95 11.48 

2012 11.85 11.24 10.51 10.47 10.37 9.82 10.07 10.24 9.46 8.69 8.23 7.75 

2013 7.86 7.94 8.41 9.97 10.28 9.72 8.76 8.84 9.47 9.75 9.45 8.08 

2014 7.50 7.56 7.50 7.15 7.06 6.88 6.99 7.01 6.84 7.09 7.39 7.58 

2015 6.90 7.19 8.20 10.44 11.57 12.05 11.29 10.24 9.70 10.05 11.13 10.44 

2016 8.62 7.89 6.73 4.75 3.83 3.15 3.26 2.94 3.77 3.35 2.78 2.71 

2017 2.28 3.39 3.10 3.85 4.16 4.00 4.99 5.96 5.32 5.23 4.11 4.58 

2018 4.19 3.87 4.68 4.15 3.71 4.57 4.35 4.20 4.43 4.16 6.17 6.02 

2019 6.95 6.16 6.20   5.76 6.55  6.82  6.87     6.70 6.74  5.83  4.54  4.78  

2020 3.49 4.52 3.79 4.05 2.93 3.56 2.70   3.02     

 

Note:  The year refers to Nepalese fiscal year. For example, 2002 corresponds to the FY 2002/2003.  

Source: Quarterly Economic Bulletins of Nepal Rastra Bank.  
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Appendix 2 

Concentrated log-likelihood function 𝒍𝒄(𝝓|𝒚) for AR model with AR(1) errors (Model 8) 

 

The graph reveals that the concentrated log-likelihood function has two local maxima. If we 

use the initial or starting value 0, �̂� = 0.3031, whereas the coefficient is 0.9737 if the starting 

value is 0.9. We need to determine the global maximum between these values. The log-

likelihood values and the parameters associated with these two values of �̂� are given below:  

Two local maxima of 𝒍𝒄(𝝓|𝒚) 

Log-likelihood value �̂� �̂� �̂� �̂�2 

-258.9987 0.2578 0.6547 0.9132 0.6153 

-261.5367 0.9759 2.5844 0.2309 0.6380 

 

From the table it is evident that the first maximum (�̂� = 0.2578) is the global one.  
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Appendix 3  

Concentrated log-likelihood function 𝒍𝒄(𝝓|𝒚) for AR model with MA(1) errors (Model 

9) 
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